

Shanghai Steltec Energy Technology CO.,LTD Address:Room J4986, Floor1, NO.185, Moyu Road , Anting Town, Jiading District, Shanghai China www.steltec-ess.com

V18.0 03/07/2023

BPE PowerDepot A1 Installation Guide

Table of Contents:

1 Product Introduction

1.1 System Introduction	1
1.2 BPE-HI-SP-3.6/5.5K Datasheet	3
1.3 BPE 5.22kWh Stackable Battery Information ²	4
1.4 BPE System Enclosure Information	9
2 Installation	
2.1 Installation Site Requirements	9
2.2 Installation Process	11
3 Electrical Connection	
3.1 Grounding 1	19
3.2 Battery and Communication Cable Connection	20
3.3 Grid/EPS Connection	22
3.4 PV Connection	24
3.5 Meter/CT Connection 2	24
3.6 Communication Connection	26
3.7 Meter/CT Communication Connection	28
3.8 RS485 Connection	31
3.9 NTC/RMO/Dry Connections	32

3.10 Wi-Fi Datalogger Connection	33
4 Commissioning the System	
4.1 Inverter Working Modes	35
4.2 Starting Up the System	44
4.3 Shutting Down the System	44
5 User Interface	
5.1 LED Explanation	45
5.2 App Setup Guide	49
5.3 Remote Monitoring	70
6. Maintenance	
6.1 Routine Maintenance	70
6.2 System Troubleshooting	71
6.3 Removing the Inverter	75

1 Product Introduction

1.1 System Introduction

Our all-in-one Hybrid PV inverter combines Solar PV, Battery Charging and Emergency Backup Power together with an easy-to-use App to manage your home's complete power needs. The BPE PowerDepot A1 allows you to simply add on more storage as required and still maintains a slim and sleek looking design that will blend into any room in your property.

The Lithium Iron Phosphate batteries are scalable from 5.22kWh to 15.66kWh, allowing you to power your entire home for hours at a time.

electric •	Length(mm)	Height(mm)	∛idth(mm)	
•	515	487	195	
	LE	D Indicato	ors	

PV BAT GRID EPS COM ALARM

1.2 BPE-HI-SP-3.6/5.5K Datasheet

Inverter Specification	STE-INV-HB5000	STE-INV-HB6000
Efficiency		
Max.Efficiency(PV to Grid)	97.3%	
Input(PV)		
Max.Input Voltage	550V	
Max.Input Current	15/15A	
Max.Short Circuit Current	20/20A	
Start Input Voltage	90V	
MPPT Operating Voltage Range	200V-480V	230V-480V
Max.Number of PV Strings	2	
No.of MPPTs	1	
Input(Battery)		
Battery Type	Lithium-ion	
Nominal Battery Voltage	48V	
Battery Voltage Range	40-60V	
Max.Charge/Discharge Current	120A	120A
Lithium-ion Batter Charge Curve	Self-adaption to BMS	
Output(Grid)		
Rated AC Active Power	5000W	6000W
Rated AC Voltage	220V	
AC Voltage Range $\textcircled{1}$	150V-300V(Adjustable)	
Rated Grid Frequency	50Hz/60Hz	
Grid Frequency Range (2)	45-55Hz/55-65Hz(Adjustable)	
Max.AC Current Output to Utility Grid(A)	25A	27.2
THDI	<3% (Rated Power)	
Power Factor	>0.99 Rated power(Adjustable 0	.8 Leading-0.8 Lagging)
Output(EPS)		
Nominal Output Power	5000VA	6000VA
Nominal Output Voltage	230V	
Nominal Output Frequency	50Hz/60Hz	
THDV	<3%@100% R Load	
Transfertime (ms)	10(type)/20(max.)	

1.3 BPE 5.22kWh Stackable Battery Information

BPE 5.22kWh Stackable Battery Datasheet

Power module model	Number of battery Modules	Battery System Capacity	Cell Technology	Battery System Voltage	Operating Voltage Range	Dimension (W*D*H)	Net Weight
	1	5.22Wh		51.2V	45.6-56.2V	515*200*490(mm) 20.28*7.87*19.29(inch)	56kg (123.46 lb)
Facua 14	2	10.44kWh		51.2V	45.6-56.2V	515*200*840(mm) 20.28*7.87*33.07(inch)	102kg (224.87 lb)
FOCUS-LI	3	15.66kWh	LI-ION(LFP)	51.2V	45.6-56.2V	515*200*1190(mm) 20.28*7.87*46.85(inch)	148kg (326.28 lb)
	4	20.88kWh		51.2V	45.6-56.2V	515*200*1540(mm) 20.28*7.87*60.63(inch)	194kg (427.7 lb)

Focus I 1	Battery Base dimensions (W*D*H)	Battery Cover dimensions (W*D*H)	Battery Base Weight	Battery Cover Weight
F 0605-L 1	515*200*90 (mm) 20.28*7.87*3.54 (inch)	515*200*50 (mm) 20.28*7.87*1.97 (inch)	5kg (11.02lb)	2.5kg (5.51lb)

Scalability	Installation	Depth of Discharge	Battery System Charge Current (recommendl)	Battery System Charge Current (Max)	Battery System Discharge Current (recommend)	Battery System Discharge Current (Max)	Display	Certficates
Max 15 in parallel	Floor stand	90%	80A	100A	80A	100A	The information of Battery, such as SOC, battery status	IEC62619 / IEC61000 / IEC62040 /
Communic ation Port	Protection Class	Charging temperature	Discharge temperature	Humidity	Max. operating altitude	Warranty	Cooling	CE / UN38.3
RS232, RS485, CAN	IP54	0C~50C (32°F-122°F)	-20C~50C (-4°F-122°F)	5%-95%	2,000m (6,562ft.)	10 years	Natural convection	

STE-BSG 5220	Battery Cell Capacity	Configuration	Battery module dimensions (W*D*H)
	102Ah	1P16S	515*200*350(mm) 20.28*7.87*13.78 (inch)
	Battery module capacity	Battery Module Voltage	Battery Module Weight
	5.22kWh	51.2V	46kg (101.41 lb)

Powering the Batteries ON/OFF

ON:

When using only a single Battery module, press and hold (for more than 3 seconds) the ON/OFF button, the Normal LED will illuminate on the battery icon and the battery will begin to operate normally.

For multiple Battery modules in parallel, press and hold (for more than 3 seconds) the ON/ OFF button on the Master battery (the module connected to the inverter), the normal LED will illuminate and the BMS will automatically encode and assign an ID to each slave battery.

Note: For multiple batteries in parallel, only the Master battery SOC LED will be on to show the whole system SOC level, slave battery SOC LEDs are off, but the Normal & Alarm LED will function as normal.

Link COM Port

The Link Com Port is the interface between the Master battery and the inverter. The inverter retrieves the battery data such as SOC, DOD, charge current via this connection.

Connect this port to the BMS port on the inverter using the included BMS cable. If you need to extend or create your own BMS cable, use this wiring guide for your RJ45 terminal wiring:

Pin 1	RS485-B (to PCS, reserved)
Pin 2	RS485-A (to PCS, reserved)
Pin 3	GND_2
Pin 4	CAN H (to PCS)
Pin 5	CAN L (to PCS)
Pin 6	RS232_TX
Pin 7	RS232_RX
Pin 8	RS232_GND

Link In/Link Out Port:

The Link In/Link Out ports are used for the communication between the battery modules.

LED Indicator Description:

STELTEC

		Normal	Fault	Battery Level Indicator								
		L8	L7	L6	L5	L4	L3	L2	L1	Descriptions		
Sta	atus	•	•	٠	•	•	•	•	•	Descriptions		
Shut	down	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	All OFF		
Star	ndby	Flash 1	OFF		Acco	rding to th	ne battery	level		Indicates Standby		
Charging	Normal	Light	OFF		According to the battery level LED flashes(flash 2),oth lighting					The highest capacity indicator LED flashes(flash 2),others lighting		
Charging	Full Charged	Light	OFF	Light	Light	Light	Light	Light	Light	Turn to standby status when charger off		
	Protection	OFF	Light	OFF	OFF	OFF	OFF	OFF	OFF	Stop charging		
	Normal	Flash 3	OFF		According to the battery level							
Discharge	UVP	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Stop charging		
	Protection	OFF	Light	OFF	OFF	OFF	OFF	OFF	OFF	Stop discharge		
Fa	ault	OFF	Light	OFF	OFF	OFF	OFF	OFF	OFF	Stop charging and Discharge		

1.4 System Enclosure Information

There is a 125A DC breaker between battery and inverter located inside of the System Enclosure. This allows you to safely work on the batteries while they are isolated from the inverter.

2 Installation

2.1 Installation Site Requirements

2.1.1 General

The BPE PowerDepot A1 is designed to be installed indoors to make the most use of its all-in-one sleek design.

The PowerDepot A1 is naturally ventilated and the location should therefore be kept clean, dry and adequately ventilated. The mounting location must allow for easy access to the unit for installation and maintenance purposes, and the battery compartment doors must not be blocked.

The following location are no suitable for installation:

- Habitable rooms;
- In loft spaces that are not specifically considered suitable;
- Access/exit areas or near emergency exit areas;
- In rooms that reach below zero degrees C;
- Seismic areas- additional security measures are required;
- Sites higher than 2000 meters above sea level;
- Places with an explosive atmosphere;
- Locations with direct sunlight or a large change in the ambient temperature
- Within 60 cm of any exit;
- Within 60 cm of any window or ventilation opening;
- Within 90 cm of any electrical outlets;

The PowerDepot A1 must not be installed near any explosive or flammable gases or materials.

If the E-home is mounted at a wall or at a distance of 300mm from the wall or structure separating it from the habitable space, the distances to other structures or objects must be increased. The following distances must then remain free:

- (i) 600 mm beside the E-home;
- (ii) 600 mm above the E-home;
- (iii) 600 mm before the E-home.

If the distance between the E-home and the ceiling or any object above the system is less than 600 mm,the ceiling or structural surface above the system must be made of non-combustible material within a radius of 600 mm around the system.

The E-home must be mounted so that the highest point is not more than 2.2m above the ground or the platform.

2.2 Installation steps

Step 1

Placed the base against the wall, the distance between the base and the wall is 30mm as followed.

Note: Levelness of the base is less than 2mm.

O IED O

Step 2

Screw the locating pin into the base and put the first battery pack on the base.

Step 3

Secure the battery module to the base with the L-shape plate

Step 4

Place the next battery module on top of the first battery module and secure the battery modules with the fixing plate. Repeat this step until all battery modules have been installed.

Step 5

Fix the mounting plate as below ,confirm the position where to drill a hole in the wall.

Step 6

Take off the L shape metal and the mounting plate and drill hole on the wall. Position the battery parallel to the wall and use a ϕ 10mmdrill to drill holes at a depth of about 45mmin the wall for subsequent fixation of the mounting plates.

NOTE: Place a cover (paper, foil, cloth etc.) over the battery while drilling into the wall to protect it from dust. In addition, at the place of installation, the slope of the ground on a horizontal plane may not exceed 3°.

Knock the expansion screw kit into the hole together with a hammer.

After tightening 2-3 buckles, the expansion bolts are tight and not loose, and then unscrew the bolts, spring washer, gasket. Refer to Figure below.

Step 7

Remove the debris baffle and install the system box on the top battery. Install and fix the mounting bracket on the wall.

Step 8

Fix the system box to the battery using screw M5*8 (from the system box)

Step 9

Fix the inverter bracket(from inverter packaging box) with the hanging board (from the system box) using hex screw M6*10 as below:

Step 10 Insert the bracket into the mounting plate as below:

Step 11

Install the inverter on the mounting bracket. Then lock the inverter using the security screw M6 (from inverter packaging box).

3 Electrical Connection

This chapter shows the details connection of ESS inverter. And PV connection is N/A for AC couple inverters. The following illustration only uses the hybrid inverters as an example.

ESS inverter system connection diagram: Non-parallel connection mode

Ensure that inverter and all cables to be installed are completely powered off during whole installation and connection. Otherwise, fatal injury can occur due to the high voltage.

3.1 Grounding

a.Connect to the ground between inverter and system box using M5 hexagon nuts with flange

WARNING	The inverter must be grounded; otherwise, there may be electric shock risk.

	If the positive pole or negative pole of the PV array is required to be grounded, then the inverter output (to AC grid) must be isolated by transformer in accordance with IEC62109-1, -2 standards.
--	--

b.Connect the battery to ground with a small metal plate using screw M4*8(from the system box) as follows and there is a 1.5m GND cable to fix the base

3.2 Battery power and communication cable connection

a.Connect the battery power cable in the down side of the breaker in the system box to the upper battery which is the master battery. Connect the battery power cable in the up side of the breaker in the system box to the inverter battery ports. Connect the battery in parallel using power cable and communication cable as follow.

b.connect the BMS cable to the inverter BMS port directly through the system box

STELTER -1

-1

3.3 Grid/EPS Connection

Grid/EPS connection please refer to below.

An AC breaker should be installed between inverter and the grid/EPS. a.Before connecting the AC cable from inverter to AC breaker, you should confirm the AC breaker is working normally. Turn off the AC breaker and keep the status.

b.Connect the PE conductor to grounding electrode, and connect the N and L conductors to AC breaker.

c.Connect the AC breakers to the grid/EPS grid.

NOTICE	Multiple inverters are not allowed to share a circuit breaker. Load is not allowed to connect between the inverter and the AC breaker.
--------	---

To ensure that the inverter can be safely and reliably disconnected from the grid, a AC breaker (\geq 50A)should be installed only for inverter GRID/EPS port.

3.4 PV Connection

3.5 Meter/CT Connection

You can monitor usage with a meter or a CT. The meter and CT can't be installed at the same time. The meter is optional while CT is standard.

Meter Connection

HB5000/6000 inverter only supports the meter: CHNT-DDSU666 meter.

DDSU666

Before connecting to Grid, please install a separate AC breaker (\geq 60A; not equipped) between meter and Grid. This ensure the inverter can be security disconnected during maintenance.

The connection diagram of power cable of meter is as shown in the figure below:

Please refer to the meter instruction manual for details.

CT Connection

Before connecting to Grid, please install a separate AC breaker (≥60A; not equipped) between CT and Grid. This ensure the inverter can be security disconnected during maintenance.

Grid

The connection diagram of power cable of CT is as shown in the figure below:

Please attention to the Current interchanger (CT) connection. The arrow on the CT indicates the current flow from grid to inverter. And lead the live line through the detection hole of CT.

3.6 Communication Connection

There are communication interfaces in the communication port on the bottom of the inverter.

Interface	D	criptions						
USB		For fast firmware upgrade.						
		4-Pins interface for parallel communication						
		A matched resistance switch for parallel communication						
RS485		5 4-Pins interface for RS485 communication						
DRM		Demand response mode for Australia application						
CT/MET	ER	For Meter communication or Grid current sense.						
BMS		Lithium battery communication interface						
	NTC	Temperature sensor terminal of lead-acid battery						
9-Pins	RMO	Remote off control						
	DRY	DO control						
WIFI		For WIFI communication.						

BMS Connection (Inverter BMS port definition)

PIN	1	2	3	4
Function Description	RS485_ A	RS485_B	GND_S	GND_S
PIN	5	6	7	8
Function Description	GND_S	GND_S	CAN_L	CAN_H

DRMs Connection

DRMs is a shortened form for "inverter demand response modes". It is a compulsory requirements for inverters in Australia.

PIN	1	2		3	4	
Function Description	DRM1/5 DRM2/6		DRM3/7		DRM4/8	
PIN	5	6		7		8
Function Description	REF	DRM 0/C	DM	NC		NC

Refer to the following steps:

3.7 Meter/CT Communication Connection

RJ45 Terminal Configuration of Meter/CT Communication

PIN	1	2	3	4	5	6	7	8
Function Description	RS485_A	RS485_B	RS485_A	RS485_B	CT+	CT-	NC	NC

СТ

Black

Red

Don't cut off any

Press the CT cable in the seal

via the side incisions.

 \Box Inverter

side

communication cables.

Inverter

Pin5(CT-)

Pin6(CT+)

3.8 RS485 Connection

RJ45 Terminal Configuration of RS485 Communication

PIN	А	В	PE	PE
Function Description	RS485_A	RS485_B	PE	PE

Connect RS485. Refer to the following steps:

3.9 NTC/RMO/DRY Connection(s)

9-Pins Terminal Configuration of Auxiliary Communication

	PIN	Function Description
Pin123456789	1	NO1 (Normal Open)
	2	N1
	3	NC1 (Normal Close)
	4	NC2 (Normal Close)
	5	N2
	6	NC2 (Normal Close)
	7	REMO OFF
	8	GND S (NTC BAT)
	9	NTC BAT+

3.10 WiFi Datalogger Connection

The appearance of datalogger may be slightly different. The figure shown here is only for reference.

4 System Operation

4.1 Inverter Working Mode

The inverter supports several different working modes.

4.1.1 Self Used Mode

Go to the "Hybrid work mode" menu, and select the "Self used mode" working mode. Under Self Used mode, the priority of PV energy will be Load > Battery > Grid, that means the energy produced by PV gives priority to local loads, excess energy is used for charging the battery, and the remaining energy is fed into the grid. This is the default mode to increase self-consumption rate. There are several situations of Self used working mode based on PV energy.

a) Wealthy PV Energy

When PV energy is wealthy, the PV energy will be first consumed by loads, the excess energy will be used to charge the battery. then the remaining energy will be fed into the grid.

b) Limited PV power

When the PV energy is not enough to cover all the loads, all the PV energy will be used for load, and the insufficient part will be supported by battery. Then still insufficient parts will be supported by grid.

c) No PV Input

The inverter will first discharge the battery energy for home load consuming when no PV input(such as in the evening or some cloudy or rainy days). If the demand is not met then will consume the grid energy.

4.1.2 Feed-in Priority Mode

Go to the "Hybrid work mode" menu, and select the "Feed-in priority mode" working mode. Under this mode, the priority of PV energy will be Load > Grid > Battery, that means the energy produced by PV gives priority to local loads, excess energy is fed into the grid, and the remaining energy is used for charging the battery.

a) Wealthy PV Energy

When PV energy is wealthy, the PV energy will be first consumed by loads, if there is excess PV power, then the excessive power will be fed into grid. If there is still PV energy rested after load consuming and grid feeding, then the rested PV power will be used to charge the battery.

b) Limited PV Energy

When PV energy is limited and can not meet the feed-in grid power, the battery will discharge to meet it.

STELTEC

38

c) No PV Input

The inverter will first discharge the battery energy for home load consuming when no PV input (such as in the evening or some cloudy or rainy days). If the demand is not met then will consume the grid energy.

4.1.3 Time-Based Control Mode

Go to the "Hybrid work mode" menu, and select the "Time-based Control" working mode. Under this mode, you can control the charging and discharging of the inverter. You can set the following parameters based on your requirements:

- Charge and discharge frequency: one time or daily
- Charging start time: 0 to 24 hours
- Charging end time: 0 to 24 hours
- Discharge start time: 0 to 24 hours
- Discharge end time: 0 to 24 hours

You can also choose whether to allow the grid to charge the battery, which is prohibited by default. If the user enables the "Grid charge function", the " Maximum grid charger power" and "Capacity of grid charger end" can be set. When the battery capacity reaches

the set value of "Capacity of grid charger end", the grid will stop charging the battery.

4.1.4 Back-up Mode

Go to the "Hybrid work mode" menu, and select the "Back-up Mode" working mode. Under this mode, the priority of PV energy will be Battery > Load > Grid. This mode aims at charging the battery quickly, and at the same time, you can choose whether to allow grid to charge the battery.

Forbid grid charging

In this mode, the battery can be charged only with PV power, and the charging power varies with PV power.

a) Wealthy PV power

When PV energy is wealthy, PV charges the battery first, then meets the load, and the rest is fed into the grid.

b) Limited PV power

When PV energy is limited, PV gives priority to charging the battery, and the grid directly meets the load demand.

Allow grid charging

In this situation, the battery can be charged both with PV and grid.

a) Wealthy PV power

When PV energy is wealthy, PV charges the battery first, then meets the load, and the rest is fed into the grid.

b) Limited PV power

When the PV energy is not enough to charge the battery, the grid energy will charge the battery as supplement. Meanwhile, the grid energy is consumed by loads.

4.1.5 Off Grid Mode

When the power grid is cut off, the system automatically switches to Off Grid mode.Under off-grid mode, only critical loads are supplied to ensure that important loads continue to work with grid cut-off.Under this mode, the inverter can't work without the battery.

a) Wealthy PV power

When PV energy is wealthy, the PV power will be first consumed by critical load, charges battery then EPS load.

b) Limited PV power

When PV energy is limited, EPS loads are first powered by PV and then supplemented by battery.

4.2 Start up the System

Check and confirm the installation is secure and strong enough and that the system groundingis OK. Then confirm the connections of AC, battery, PV etc. are correct. Confirm the parameters and configurations conform to relevant requirements.

AC Frequency 50/60Hz	PV Voltage 90~530V
Battery Voltage 42~60V	Grid AC Voltage 180~270V

Make sure all the above aspects are right, then follow the procedure to start up the inverter: 1) Power on PV.

- 2) Power on the Battery.
- 3) Power on the AC.
- 4) Power on the EPS.
- 5) Connect the cell phone App via Bluetooth. Please refer to Section 7.2 for details.

6) Click the Power ON in the App for the first time. Please refer to Section 7.2 for details.

4.3 Shutdown Procedure

According to actual situation, if there is a must to shut-down the running system, please follow below procedure:

- 1) Connect the cell phone App via Bluetooth. Please refer to Section 7.2 for details.
- 2) Click the Power OFF on the App. Please refer to Section 7.2 for details.
- 3) Power off the EPS.
- 4) Power off the AC.
- 5) Power off the Battery.
- 6) Power off the PV.

7) If you need to disconnect the inverter cables, please wait at least 10 minutes before touching these parts of inverter.

5 Commissioning and Inspection

5.3Commissioning

It is necessary to make a complete commissioning of the E-home system. This will essentially protect the system from fire, electric shock or other damages or injuries.

5.3.1 Inspection

Before commissioning, the operator or installer (qualified personnel) must inspect the system carefully and make sure:

1. The system is firmly installed correctly following the contents and notifications of this manual, and there are enough spaces for operation, maintenance and ventilation.

2.All the terminals and cables are in good status without any damages.

3.No items are left on the inverter or within the required clearance section.

4. The PV, battery pack is working normally, and grid is normal.

5.3.2 Commissioning Procedure

After the inspection and make sure status is right, then start the commissioning of the system.

1.Power on the system by referring to the Startup section 4.2.

2.Setting the parameters on the App according to user's requirement.3.Finish commissioning.

6 User Interface

6.1 LED

45	This section describes the LED panel. LED indicator includes PV, BAT, GRID, EPS, COM, ALARM indicators. It includes the explanation of indicator states and summary of indicator states under the running state of the machine.	PV	D BAT	GRID	B EPS	Сом	ALARM
----	--	----	----------	------	-----------------	-----	-------

LED Indicator	Status	Description
	On	PV input is normal.
PV	Blink	PV input is abnormal.
	Off	PV is unavailable.
	On	Battery is charging.
BAT	Blink	Battery is discharging. Battery is abnormal.
	Off	Battery is unavailable.
	On	GRID is available and normal.
GRID	Blink	GRID is available and abnormal.
	Off	GRID is unavailable.
	On	Communication is ok.
СОМ	Off	Power supply is unavailable.
	On	EPS power is available.
EPS	Blink	EPS output is abnormal.
	Off	EPS power is unavailable.
	On	Fault has occurred and inverter shuts down.
ALARM	Blink	Alarms has occurred but inverter doesn't shut down.
	Off	No fault.

Shanghai Steltec Energy Technology CO.,LTD

STELTEC

48

Details	Code	PV LED	Grid LED	BAT LED	EPS LED	COM LED	ALARM LED
PV normal		•	O	O	O	O	0
No PV		0	\bigcirc	O	\bigcirc	\bigcirc	0
PV over voltage	B0						
PV under voltage	B4						
PV irradiation weak	B5	*	O	O	O	O	0
PV string reverse	B7		-	_	-	_	
PV string abnormal	B3						
On grid		O	٠	O	O	Ø	0
Grid over voltage	A0						
Grid under voltage	A1						
Grid absent	A2						
Grid over frequency	A3	O	*	O	O	O	0
Grid under frequency	A4						
Grid abnormal	A6						
Grid over mean voltage	A7 A8						
Pattery in charge	7.0		0	•			0
Battery in charge	D1	0	0	•	0	0	0
Battery in discharge	DI	0	0	**	0	0	0
Battery under veltage	D2		0	~ ~	0	0	0
Battery over voltage	D3						
Battery discharge over current	D4		-		_	-	
Battery over temperature	D5	Ø	O	*	O	O	0
Battery under temperature	D6						
Communication loss (Inverter - BMS)	D8						
EPS output active		O	O	O	•	O	O
EPS output inactive		O	O	\bigcirc	0	O	Ø
EPS short circuit	DB						
EPS over load	DC	0	0	\bigcirc	+	\bigcirc	0
EPS output voltage abnormal EPS over dc-bias voltage	D7 CP	e	۲	9	~	9	Ŭ

6.2 App Setting Guide

6.2.1

Download "SolarHope" from the Apple Store or Google Play.

The APP should access some permissions such as device's location. You need to grant all access rights in all pop-up windows when installing the APP or setting your phone.

6.2.2 App Architecture

Local connection: APP reads data from inverter through Bluetooth connection with Modbus protocol to display and configure inverter parameter.

6.2.3 Local Setting

Access Permission

Before using the local setting, "SolarHope" APP should access some permissions. (You need to grant all access rights in all pop-up windows when installing the APP or setting your phone.) When the APP asks for permission, please click Allow.

Connect Inverter

Firstly, open the Bluetooth on your own phone, then open "SolarHope" APP. Press Local Setting to go to the connect page. This page shows the inverters which you can connect or you have connected. (As shown below) Press the inverter's name to connect it.

Quick Setting

1.Connect to the router.

Step 1 Go to Quick Setting page.

Step 2 Click each item to enter the information, then click Next.

 Set parameters of power limit
 Step 1 Click each item to enter the parameters of power limit.
 Step 2 Click Next .
 Step 3 Click Previous back to the previous page.

4. Set parameters of work mode Step 1 Click each item to enter the information of work mode. Step 2 Click Next . Step 3 Click Previous back to the previous page.

XXXXXXXX						
12	3 4 5					
Step4 Set parameters for workmode.	the inverter to connect to the					
Hybrid work mode	Click each item					
Battery type selection	to enter the information.					
EPS Output						
Previous	Next					

5. Start Inverter Step 1 Click ئى . Step 2 Click Previous back to the previous page.

APP Power Chart The power chart is showed by Day, Month and Year in our APP. For each

exhibition method, it includes both Production and Consumption. We use different icons and colors for different power messages. The icon and color definition as below:

Shanghai Steltec Energy Technology CO.,LTD

Color: Blue Definition: Load consumption only from PV

Color: Red Definition: Battery charge power with PV or AC

Definition: Battery discharge power for load consumption or feed-in grid

Color: Purple Definition: Consumption power from grid

Color: Purple Definition: Feed-in grid power from PV or battery

Color: Orange Definition: Loadower

Color: Red

Color: Orange Definition: PV generating power 1. Query (Daily) Data

Go to Chart > Day page. It will show the Daily Production or Consumption Curve in this page. You

can swipe the screen left and right to switch the graph.

Day Chart--Production

The above combination day chart shows the PV production power distributed with three parts: load consumption power (Blue) battery charge power (Red) feed-in grid power (Purple)

Day Chart--Consumption

The above combination day chart shows the load consumption power from three parts:

PV generation power (Blue)

battery discharge power (Red)

grid power (Purple)

Power supported by PV + power supported by battery + power supported by grid = Load consumption power.

2. Query (Monthly) Data

Go to Chart > Month page. It will show the Monthly Production or Consumption Curve in this page. You can swipe the screen left and right to switch the graph.

Month Chart--Production

The above combination day chart shows the load consumption power from three parts: load consumption capacity (Blue) battery storage capacity (Red) feed-in grid capacity (Purple)

Month Chart--Consumption

The above combination month chart shows the load consumption capacity from three parts: PV generation capacity (Blue) battery discharge capacity (Red) grid capacity (Purple)

Query (Yearly) Data

Go to Chart > Year page. It will show the Annually Production or Consumption Curve in this page. You can swipe the screen left and right to switch the graph.

Year Chart--Production

The above combination year chart shows the distribution of PV production capacity with three parts: load consumption capacity (Blue) battery storage capacity (Red) feed-in grid capacity (Purple)

Year Chart--Consumption

The above combination year chart shows the load consumption capacity from three parts: PV generation capacity (Blue) battery discharge capacity (Red) grid capacity (Purple)

2. Local Setting Homepage

This page shows the basic information of inverter. Clickto display the warning message.

History Log

Press Log at the bottom and then go to the history logpage (as shown below). It contains all the logs for the inverter.

Year Chart--Consumption

The above combination year chart shows the load consumption capacity from three parts: PV generation capacity (Blue) battery discharge capacity (Red) grid capacity (Purple)

2. Local Setting Homepage

This page shows the basic information of inverter. Clickto display the warning message.

History Log

Press Log at the bottom and then go to the history logpage (as shown below). It contains all the logs for the inverter.

62

6

-01

Console

Maintenance

Go to Console page. And click Maintenance

₿	Feature Parameters	>				
ŀ	Power Limit	>				
>	Reactive Power Control	>				
2	Masking Fault Detection	>				
-	Other Setting	>				
))	Hybrid Setting	>				
	Logout					
X ck Sat	Li A O	Console				
ndow (as shown below).						
Login As Administrator						
E	Enter administrator password					
		CANCEL	ОК			

XXXXXXXX

> -

>

>

>

In this page, you can view the basic information like some version information, do some maintaining operations like turn off/on the inverter and manage data.

<	Maintenance
Basic	information
Model	Name HB4600
Serial	number
Maste	r DSP Version
Slave	DSP Version
	'ersion
DC-D	C converter Version
Mainta	aining
Power	On
Turn on	the inverter
Power	• Off f the invertor
Factor	
Parame	ters will be reset to factory data
Clear Clear h	historical information istorical information
Data N	lanagement
Histor	y export
All devi	ce history will be exported to root directory
Daily e	energy output ergy data will be exported to root directory
Month The end	Ily Energy Yield Export ergy data will be exported to root directory
Annua The en	I output ergy data will be exported to root directory
About	
App V 6.5.1	iersion

÷.

Ħ

 \checkmark

÷

=

×

0

Maintenance

Access Management

(••) Communication Setting

Grid Parameters

Feature Parameters

Reactive Power Control

Masking Fault Detection

Logout

Ħ

0

Power Limit

Other Setting

dı

Hybrid Setting

XXXXXXXX

>

>

>

>

>

>

>

\$

Console

Access Management

Go to Console > Access Management page. In this page, you can switch the login permission.

Communication Setting

65

Go to Console > Communication Setting page. In this page, you can set or change the parameters of communication settings: Basic Setting, RS485 Setting and Ethernet Setting.

	XXXXXXXX		<	Communicatio	n Setting		<	Basic Setting
>	Maintenance	>	e	Basic Setting			IP ad	dress
÷	Access Management	>	驿	RS485 Setting		>	WIFI	Router Settings
(++)	Communication Setting	,	e,	Ethernet Setting	_	>		
۶	Grid Parameters	>				L_,	< Modb	RS485 Setting us Address
▦	Feature Parameters	>						
\mathbf{v}	Power Limit	>						
۰	Reactive Power Control	>					<	Ethernet Setting
*	Masking Fault Detection	>					IP Mo	de
=	Other Setting	>					169.25 IP Ma 255.25	aress 4.0.71 sk 5.255.0
• •	Hybrid Setting	>					Gatev 169.16	vay 8.0.0
							IP Aut Enable	to DNS
\$6	Logout	0 *					IP DN 0.0.0.0	S1
Quick Set	up Chart Home	Log Console					IP DN 0.0.0.0	\$2

Grid Parameters

Go to Console > Grid Parameters page. In this page, you can set or change the parameters of Grid side, as shown in the figure.

Feature Parameters

Go toConsole > Feature Parameters page. In this page, you can set or change the feature parameters, as shown in the figure.

Power Limit

Go to Console > Power Limit page. In this page, you can set or change the parameters of power limit, as shown in the figure.

↓		1	
Y Power Limit	〈 Feature Parameters		Crid Parameters
Power control Digital Power Meter	Low Voltage Through		Standard Code Unknown
Meter location On Grid	Island Detection		First Connect Delay Time(s)
Meter Type CHINT/DTSU666	Isolation Detection		Reconnect Delay Time (s)
Power flow direction From grid to inverter	Leakage Current Detection(GFCI)		Frequency High Loss Level_1(Hz) 0
Digital meter modbus address Terminal Resistor			Frequency Low loss Level_1(Hz) 0
Maximum feed in grid power(W) 70000	Derated Power(%)		Voltage High Loss Level_1(V) 0
	Power Factor		Voltage Low Loss Level_1(V) 0
			Frequency High Loss Time Level_1(ms)
	Insulation Impedance($k\Omega$)		0
			Frequency Low loss Time Level_1(ms) 0
	Leakage Current Point(mA)		Voltage High Loss Time Level_1(ms) 0
	Unbalanced Voltage Point(%)		Voltage Low Loss Time Level_1(ms) 0
	Moving Average Voltage Limit(V)		Frequency High Loss Level_2(Hz)
			Voltage High Loss Level_2(V) 0
			Frequency High Loss Time Level_2(ms)
			Voltage High Loss Time Level 2(ms)

How to Autotest?

- Step 1. Go to Grid Parameters > Standard Code page to select the IT (CEI 0-21).
- Step 2. Back to Console page. Refresh the page and enter the Autotest page to click START.
- Step 3. Then the inverter is autotesting. Wait for about 10 minutes, the autotest process will be finished. Step 4. You can click the DOWNLOAD to save the data file if necessary.

Note: if the Autotest option can't be turned out after the refresh in step 2. Please re-connect after logout. And then go to Console>Autotest page to clickSTART.

C Grid Parameters	Grid Parameters	Crid Parameters
Standard Code Unknown	s. Standard Code	Standard Code IT (CEI 0-21)
First Connect Delay Time(s)	Fi FR (UTE C15-712-1)	First Connect Delay Time(s)
Reconnect Delay Time (s)	61 FR (UTE C15-712-1 Island 50Hz)	Reconnect Delay Time (s)
Frequency High Loss Level_1(Hz) 0	60 FR (UTE C15-712-1 Island 60Hz)	60
Frequency Low loss Level_1(Hz) 0	Fi GR (VDE0126-Continent)	First Connect Power Gradient(%/min) 19
Voltage High Loss Level_1(V) 0	GR (VDE0126-Islands)	Reconnect Power Gradient(%/min)
Voltage Low Loss Level_1(V) 0	9 IL (IS 4777)	9 Fraguency High Lorg Loval 1(Hz)
Frequency High Loss Time Level_1(ms)	F IN (IEC61727)	Frequency high Loss Level_1(H2)
Frequency Low loss Time Level_1(ms)	Fi IT (CEI 0-21)	Frequency Low loss Level_1(Hz)
Voltage High Loss Time Level_1(ms)	IT (CEI 0-21 ACEA)	Voltage High Loss Level_1(V)
Voltage Low Loss Time Level_1(ms)	21 IT (CEI 0-16)	204.5
Frequency High Loss Level_2(Hz)	JO (IRR-DCC MV 2015)	195.5
voltage High Loss Level_2(V)	JO (IRR-TIC 2015)	Frequency High Loss Time Level_1(ms) 100
Frequency High Loss Time Level_2(ms)	JP (JETGR0002–1–2.0)	Frequency Low loss Time Level_1(ms)
Voltage High Loss Time Level_2(ms)		Valtace High Loss Time Loval 1/ms)

	XXXXXXXX		Autotest
Č.	Maintenance	>	START
÷	Access Management	>	-Hz Frequency high level 2 break time -ms
((=))	Communication Setting	>	Frequency low level 1 threshold
۴	Grid Parameters	>	-Hz Frequency low level 1 value -Hz Frequency low level 1 break time
▦	Feature Parameters	>	-ms
¥	Power Limit	>	Frequency low level 2 threshold -Hz Frequency low level 2 value
¢	Reactive Power Control	>	Frequency low level 2 break time -ms
ę.	Autotest	>	SPI Local Command
	Masking Fault Detection	>	SPI External Signal SPI Remote Off
=	Other Setting	>	Model Name
0.	It haid Catting		SN
×	ան 🕈 🛈	\$	DOWNLOAD

Reactive Power Control

Go to Console > Reactive Power Control page. In this page, you can set or change the Reactive Power Control parameters.

	XXXXXXXX		K Reactive Power Control
>	Maintenance	>	Reactive Power Control Settling Time (s)
±	Access Management	>	Reactive Power Control Mode Pure Active power
((+))	Communication Setting	>	
۴	Grid Parameters	>	
▦	Feature Parameters	>	
≁	Power Limit	>	
٠	Reactive Power Control	>	
*	Masking Fault Detection	>	
=	Other Setting	>	
_ »	Hybrid Setting	>	
	Logout		
Quick Se	tup Chart Home Log	¢ Console	

70

Other Setting

Go to Console > Other Setting page. In this page, you can set other setting parameters.

	XXXXXXXX		Content Setting	
>	Maintenance	>	Date and Time	
÷	Access Management	>	PV panel connect type PV panel independence	
((+))	Communication Setting	>	Buzzer ON	 Enable Buzzer On to open the Buzzer function.
٣	Grid Parameters	>	DRM Function	 Enable DRM Function to open
▦	Feature Parameters	>	Parallel Mode	 Enable Parallel mode when
1	Power Limit	>		parallel connection.
٠	Reactive Power Control	>		
*	Masking Fault Detection	>		
=	Other Setting	>		
۵	Hybrid Setting	>		
	Logout			
Quick Se	tup Chart Home Log	Console		

Hybrid Setting

Go to Console > Hybrid Setting page. In this page, you can set Hybrid Setting parameters.

	XXXXXXXX		K Hybrid Setting
>	Maintenance	>	Hybrid work mode Self used mode
÷	Access Management	>	Battery type selection
((-1)	Communication Setting	>	Giavaitable
Ŧ	Grid Parameters	>	Maximum charger power(W) 0
⊞	Feature Parameters	>	Capacity of charger end(%) 0
\checkmark	Power Limit	>	Maximum discharger power(W) 555
٠	Reactive Power Control	>	Capacity of discharger end(%) 0
*	Masking Fault Detection	>	EPS Output
=	Other Setting	>	Rated output voltage(V) 220V
1 0	Hybrid Setting	>	Off-grid start-up battery capacity(%) 0
	Longuit		
*	.lu 🏠 🔘	•	Support Normal Load
Quick Se	t Chart Home Log	Console	Force Charge Start Capacity of charger Start(SOC %) 10
			Force Charge End Capacity of charger End(SOC %) 15

6.3 Remote Monitoring

6.3.1 Remote Monitoring

Since you have configurated the inverter to router via SolarHope APP in page 51, please use SOLARMAN WEB or APP for remote monitoring of the inverter.

If you are installers or distributors, please use SOLARMAN Business, here is the guide: 1. https://1m29l9z267.k.topthink.com/@solarmanbusiness-web_en/xiaomaishangjiabanWebcaozuoshouce.html 2. https://1m29l9z267.k.topthink.com/@solarmanbusiness-app_en/1xiaomaishangjiabanAPPyingyong.html

If you are end users, please use SOLARMAN Smart, here is the guide:

1. https://1m29l9z267.k.topthink.com/@solarmansmart-web_en/1xiaomaizhidianWebyingyong.html 2. https://1m29l9z267.k.topthink.com/@solarmansmart-app_en/1.xiaomaizhidianAPPyingyong.html

 Before maintaining and commissioning inverter and its peripheral distribution unit, switch off all the charged terminals of the inverter and wait at least 10 minutes after the inverter is powered off.

7. Maintenance

7.1 Routine Maintenance

Items	Check Content	Maintain Content	Maintenance Interval
Inverter output status	Statistically maintain the status of electrical yield, and remotely monitor its abnormal status.	N/A V	/eekly
PV inverter cleaning	Check periodically that the heat sink is free from dust and blockage.	Clean periodically the heat sink.	Yearly
PV inverter running status	Check that the inverter is not damaged or deformed. Check for normal sound emitted during inverter operation. Check and ensure that all inverter communications are running well.	If there is any abnormal phenomenon, replace the relevant parts.	Monthly
PV inverter electrical connections	Check that all AC, DC and communication cables are securely connected; Check that PGND cables are securely connected; Check that all cables are intact and free from aging.	If there is any abnormal phenomenon, replace the cable or re-connect it.	Semiannually

7.2 System Troubleshooting

When the inverter has an exception, its basic common warning and handling methods are shown below.

Code	Alarm Information	Suggestions
A0	Grid over voltage	1. If the alarm occurs occasionally, possibly the power grid
A1	Grid under voltage	voltage is abnormal temporarily, and no action is required. 2. If the alarm occurs repeatedly, contact the local power station. After receiving approval of the local power bureau,
A3	Grid over frequency	revise the electrical protection parameter settings on the inverter through the App. 3 If the alarm persists for along time, check whether the AC
A4	Grid under frequency	circuit breaker /AC terminals is disconnected, or if the grid has a power outage.
A2	Grid absent	Wait till power is restored.
В0	PV over voltage	Check whether the maximum input voltage of a single PV string exceeds the MPPT working voltage. If yes, modify the number of PV module connection strings.
B1	PV insulation abnormal	 Check the insulation resistance against the ground for the PV strings. If a short circuit has occurred, rectify the fault. If the insulation resistance against the ground is less than the default value in a rainy environment, set insulation resistance protection on the App.
B2	Leakage current abnormal	 If the alarm occurs occasionally, the inverter can be automatically recovered to the normal operating status after the fault is rectified. If the alarm occurs repeatedly, contact your dealer for technical support.
В4	PV under voltage	 If the alarm occurs occasionally, possibly the external circuits are abnormal accidentally. The inverter automatically recovers to the normal operating status after the fault is rectified. If the alarm occurs repeatedly or last a long time, check whether the insulation resistance against the ground of PV strings is too low.
CO	Internal power supply abnormal	 If the alarm occurs occasionally, the inverter can be automatically restored, and no action isrequired. If the alarm occurs repeatedly, please contact the customer service.

	C2	Inverter over dc-bias curren	 If the alarm occurs occasionally, possibly the power grid voltage is abnormal temporarily, and no action is required. If the alarm occurs repeatedly, and the inverter fails to generate power, contact the customer service.
	C3	Inverter relay abnormal	 If the alarm occurs occasionally, possibly the power grid voltage is abnormal temporarily, and no action is required. If the alarm occurs repeatedly, pls. refer to the suggestions or measures of Grid over voltage. If the inverter fails to generate power, contact the customer service center. If there is no abnormality on the grid side, the machine fault can be determined. (If you open the cover and find traces of damage to the relay, it can be concluded that the machine is faulty.) And pls. contact the customer service.
	CN	Remote off	 Local manual shutdown is performed in APP. The monitor executed the remote shutdown instruction. Remove the communication module and confirm whether the alarm disappears. If yes, replace the communication module. Otherwise, please contact the customer service.
	C5	Inverter over temperature	 If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required. If the alarm occurs repeatedly, please check whether the installation site has direct sunlight, bad ventilation, or high ambient temperature (such as installed on the parapet). Yet, if the ambient temperature is lower than 45° C and the heat dissipation and ventilation is good, please contact customer service.
	C6	GFCI abnormal	 If the alarm occurs occasionally, it could have been an occasional exception to the external wiring. The inverter can be automatically recovered. No action is required. If it occurs repeatedly or cannot be recovered for a long time, please contact customer service.
	B7	PV string reverse	Check and modify the positive and negative polarity of the input string.
·	C8	Fan abnormal	 If the alarm occurs occasionally, please restart the inverter. If it occurs repeatedly or cannot be recovered for a long time, check whether the external fan is blocked by other objects. Otherwise, Please contact customer service.
	C9	Unbalance Dc-link voltage	 If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required.
	CA	Dc-link over voltage	 If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service.

СВ	Internal communication error	 If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required. 	
СС	Software incompatibility	 If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service. 	
CD	Internal storage error	 If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required. 	
CE	Data inconsistency	 If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service. 	
CF	Inverter abnormal	 If the alarm occurs occasionally, the inverter can be automatically recovered. No action is required. 	
CG	Boost abnormal	 If the alarm occurs repeatedly, the inverter cannot work properly. Please contact customer service. 	
CJ	Meter lost	 Check the meter parameter settings Check whether the communication address of the inverter is consistent with that of the electricity meter through local APP. The communication line is connected incorrectly or in bad contact electricity meter failure. If exclude the above faults, the alarm continues to occur, please contact the customer service center. 	
P1	Parallel ID warning	It is Parallel ID Alarm. Pls. check the parallel communication cable, and check whether any inverter joins or exits online. All inverters are powered off completely, check the line, and then power on the inverters again to ensure that the alarm is lifted	
P2	Parallel SYN signal warning	Parallel synchronization signal is abnormal. Check whether the parallel communication cable is properly connected.	
P3	Parallel BAT abnormal	The parallel battery is abnormal. Check w hether the battery of the inverter is reported low voltage or the battery is not connected.	
P4	Parallel GRID abnormal	The parallel grid is abnormal.Check w hether the grid of the inverter is abnormal.	

D2	Battery over voltage	 If the alarm occurs occasionally, the inverter can be automatically recovered and no action is required. Check whether the battery overvoltage protection value is improperly set. The battery is abnormal. If exclude the above, the alarm continues to occur, please contact customer service. 	
D3	Battery under voltage	 If the alarm occurs occasionally, the inverter can be automatically recovered and no action is required. Check the communication line connection between BMS and inverter (lithium battery). The battery is empty or the battery voltage is lower than the SOC cut- off voltage. The battery undervoltage protection value is improperly set. The battery is abnormal. If exclude the above, the alarm continues to occur, please contact the customer service center. 	
D4	Battery discharger over curren	 Check whether the battery parameters are correctly set. The battery is undervoltage. Check whether a separate battery is loaded and the discharge current exceeds the battery specifications. The battery is abnormal. If exclude the above, and the alarm continues to occur, please contact customer service. 	
D5	Battery over temperature	 If the alarm occurs repeatedly, please check whether the installation site is in direct sunlight and whether the ambient temperature is too high (such as in a closed room). If the battery is abnormal, replace it with a new one If exclude the above, and the alarm continues to occur, please contact the customer service center. 	
D6	Battery under temperature		
D7	EPS output voltage abnormal	 Check whether the EPS voltage and frequency Settings are within the specified range Check whether the EPS port is overloaded When not connected to the power grid, check whether EPS output is normal If exclude the above, and the alarm continues to occur, please contact customer service. 	
D8	Communication error (Inverter-BMS)	 Check whether the battery is disconnected. Check whether the battery is well connected with the inverter. Confirm that the battery is compatible with the inverter. It is recommended to use CAN communication. Check whether the communication cable or port between the battery and the inverter is faulty. If exclude the above, and the alarm continues to occur, please contact the customer service center. 	

D9	Internal communication loss (E-M)	 Check whether the communication cables between EPS, electricity meter and inverter are well connected and whether the wiring is correct Check whether the communication distance is within the specified range Disconnect the external communication and restart the electricity meter and inverter. If exclude the above, and the alarm continues to occur, please contact the customer service center. 	
DA	Internal communication loss (M-D)		
CU	Dcdc abnormal	 If the alarm occurs occasionally, the inverter can be automatically recovered and no action is required. If the alarm occurs repeatedly, please check: Check whether the MC4 terminal on the PV side is securely connected. Check whether the voltage at the PV side is open circuit, short circuit or ground to ground, etc. Exclude the above, and the alarm continues to occur, please contact the customer service center. 	
СР	EPS over dc-bias voltage	 If the alarm occurs occasionally, the inverter can be automatically recovered and no action is required. If the alarm occurs repeatedly, the inverter cannot work properly. Pls. contact the customer service center. 	
DB	EPS short circuit	 Check whether the live line and null line of EPS output are short- circuited. If it is confirmed that the output is not short-circuited or an alarm, please contact customer service to report for repair (after the troubleshooting of alarm problems, EPS switch needs to be manually turned on during normal use) 	
DC	EPS over load	1. Disconnect the EPS load and check whether the alarm is lift ed 2. If the load is disconnected but the alarm still exists, please contact the customer service. (After the alarm is lift ed, the EPS switch needs to be manually turned on for normal use.)	

7.3 Removing the Inverter

WARNING Before removing DC input connector, double check DC input switch is turned to OFF to avoid inverter damage and personal injury.

Perform the following procedures to remove the inverter:

Step 1. Disconnect all cables from the inverter, including communications cables, DC input power cables, AC output power cables, and protective ground (PGND) cable, as shown below.

Step 2. Remove the inverter from the mounting bracket.